this space intentionally left blank

March 22, 2016

Filed under: tech»web

ES6 in anger

One of the (many) advantages of running Seattle Times interactives on an entirely different tech stack from the rest of the paper is that we can use new web features as quickly as we can train ourselves on them. And because each news app ships with an isolated set of dependencies, it's easy to experiment. We've been using a lot of new ES6 features as standard for more than a year now, and I think it's a good chance to talk about how to use them effectively.

The Good

Surprisingly (to me at least), the single most useful ES6 feature has been arrow functions. The key to using them well is to restrict them only to one-liners, which you'd think would limit their usefulness. Instead, it frees you up to write much more readable JavaScript, especially in array processing. As soon as it breaks to a second line (or seems like it might do so in the future), I switch to writing regular function statements.


//It's easy to filter and map:
var result = list.filter(d => d.id).map(d => d.value);

//Better querySelectorAll with the spread operator:
var $ = s => [...document.querySelectorAll(s)];

//Fast event logging:
map.on("click", e => console.log(e.latlng);

//Better styling with template strings:
var translate = (x, y) => `translate(${x}px, ${y}px);`;

Template strings are the second biggest win, especially as above, where they're combined with arrow functions to create text snippets. Having a multiline string in JS is very useful, and being able to insert arbitrary values makes building dynamic popups or CSS styles enormously simpler. I love writing template strings for quick chunks of templating, or embedding readable SQL in my Node apps.

Despite the name, template strings aren't real templates: they can't handle loops, they don't really do interpolation, and the interface for using "tagged" strings is cumbersome. If you're writing very long template strings (say, more than five lines), it's probably a sign that you need to switch to something like Handlebars or EJS. I have yet to see a "templating language" built on tagged strings that didn't seem like a wildly frustrating experience, and despite the industry's shift toward embedded DSLs like React's JSX, there is a benefit to keeping different types of code in different files (if only for widespread syntax highlighting).

The last feature I've really embraced is destructuring and object literals. They're mostly valuable for cleanup, since all they do is cut down on repetition. But they're pleasant to use, especially when parsing text and interacting with CommonJS modules.



//Splitting dates is much nicer now:
var [year, month, day] = dateString.split(/\/|-/);

//Or getting substrings out of a regex match:
var re = /(\w{3})mlb_(\w{3})mlb_(\d+)/;
var [match, away, home, index] = gameString.match(re);

//Exporting from a module can be simpler:
var x = "a";
var y = "b";
module.exports = { x, y };

//And imports are cleaner:
var { x } = require("module");

The bad

I've tried to like ES6 classes and modules, and it's possible that one day they're going to be really great, but right now they're not terribly friendly. Classes are just syntactic sugar around ES5 prototypes — although they look like Java-esque class statements, they're still going to act in surprising ways for developers who are used to traditional inheritance. And for JavaScript programmers who understand how the language actually works, class definitions boast a weird, comma-less syntax that's sort of like the new object literal syntax, but far enough off that it keeps tripping me up.

The turning point for the new class keyword will be when the related, un-polyfillable features make their way into browsers — I'm thinking mainly of the new Symbols that serve as feature flags and the ability to extend Array and other built-ins. Until that time, I don't really see the appeal, but on the other hand I've developed a general aversion to traditional object-oriented programming, so I'm probably not the best person to ask.

Modules also have some nice features from a technical standpoint, but there's just no reason to use them over CommonJS right now, especially since we're already compiling our applications during the build process (and you have to do that, because browser support is basically nil). The parts that are really interesting to me about the module system — namely, the configurable loader system — aren't even fully specified yet.

New discoveries

Most of what we use on the Times' interactive team is restricted to portions of ES6 that can be transpiled by Babel, so there are a lot of features (proxies, for example) that I don't have any experience using. In a Node environment, however, I've had a chance to use some of those features on the server. When I was writing our MLB scraper, I took the opportunity to try out generators for the first time.

Generators are borrowed liberally from Python, and they're basically constructors for custom iterable sequences. You can use them to make normal objects respond to language-level iteration (i.e., for ... of and the spread operator), but you can also define sequences that don't correspond to anything in particular. In my case, I created a generator for the calendar months that the scraper loads from the API, which (when hooked up to the command line flags) lets users restart an MLB download from a later time period:


//feed this a starting year and month
var monthGen = function*(year, month) {
  while (year < 2016) {
    yield { year, month };
    month++;
    if (month > 12) {
      month = 1;
      year++;
    }
  }
};

//generate a sequence from 2008 to 2016
var months = [...monthGen(2008, 1)];

That's a really nice code pattern for creating arbitrary lists, and it opens up a lot of doors for JavaScript developers. I've been reading and writing a bit more Python lately, and it's been amazing to see how much a simple pattern like this, applied language-wide, can really contribute to its ergonomics. Instead of the Stream object that's common in Node, Python often uses generators and iteration for common tasks, like reading a file line-by-line or processing a data pipeline. As a result, I suspect most new Python programmers need to survey a lot less intellectual surface area to get up and running, even while the guts underneath are probably less elegant for advanced users.

It surprised me that I was so impressed with generators, since I haven't particularly liked Python very much in the past. But in reading the Cookbook to prep for a UW class in Python, I've realized that the two languages are actually closer together than I'd thought, and getting closer. Python's class implementation is actually prototypical behind the scenes, and its use of duck typing for built-in language features (such as the with statement) bears a strong resemblance to the work being done on JavaScript Promises (a.k.a. "then-ables") and iterator protocols.

It's easy to be resistant to change, and especially when it's at the level of a language (computer or otherwise). I've been critical of a lot of the decisions made in ES6 in the past, but these are positive additions on the whole. It's also exciting, as someone who has been working in JavaScript at a deep level, to find that it has new tricks, and to stretch my brain a little integrating them into my vocabulary. It's good for all of us to be newcomers every so often, so that we don't get too full of ourselves.

Future - Present - Past